
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 88

Performance Measurement using CASE

Expression over PIVOT Operator in SQL Server

2008 r2

Mr. Sudhakar Panigrahy
1
, Mr. Pragnyaban Mishra

2

Dept. of CSE, Gandhi Institute of Engineering & Technology, Gunupur, Rayagada, India
1,2

Abstract: Data aggregation using PIVOT operator is useful in many aspects by converting data from rows into column

as per the common values. The execution can be faster by using CASE expression in SQL Server 2008 r2. So, CASE

expression can be used in the place of PIVOT operator. Some of the major issues in PIVOT operator are the grouping

elements can’t be defined explicitly. Thus, when database schema changes by adding new column in the existing tables

results NULL value in the report. Getting row and column wise aggregated value not possible with PIVOT operator.

At a time only one grouping function can be used i.e Different grouping functions can’t be applied in different pivot

columns. These problems can be solved by using CASE expression. In this paper it is explained the difficulties

observed in PIVOT operator and solved using CASE Expression.

Keywords: SQL Server 2008 r2, CASE expression, NULL value, PIVOT operator.

1. INTRODUCTION

A pivot table is a frequently used method of summarizing

and displaying especially report data by means of

grouping and aggregating values. The main use of PIVOT

operator in SQL Server is to rotate rows into columns

without changing the data base schema. Pivoting (or

producing a "cross-tab") is a common reporting

requirement and data stored in rows are presented it in

columns. PIVOT compares unique value from row and

aggregates the values of the specified column. These

aggregated value represented in cross tab format (PIVOT

table). Converting from row to column can be done

manually through a traditional CASE expression [7, 8, 9].

Generating Dynamic column in both PIVOTE operator

and CASE expression is a common requirement for

developer as sometimes dynamic column retrieves from

another schema or depending on the different values of

row data.

The three phases which are used in the CASE expression

are Grouping Phase, Spreading Phase and Aggregation

Phase. In the Grouping Phase it compacts the records into

distinct database entities and performs the GROUP BY.

The Spreading Phase which is a second phase where

multiple CASE expressions rotates data from rows into

columns and finally in the aggregation phase the GROUP

function can be used to get grouping values in the pivot

column.

In this paper it is explained the details of SQL statements

in order to execute complex queries in both the PIVOT

operator and CASE expression with dynamic pivot

column.

2. RELATED WORK

Valentin Dinu et al. [1] explained the Entity–Attribute–

Value (EAV) data, as present in repositories of clinical

patient data, and show how it must be transformed

(pivoted) into one-column-per-parameter format before it

can be used by a variety of analytical programs. Guiyi Wei

et al. [2] explained an adaptive discovery frame work

called as PIVOT which is called as an active information

discovery mechanism and it was found, PIVOT is highly

adaptive and necessary utility for grid system.

Damianos Chatziantoniou [3] Transpose a table row data

as columns with correlated aggregation and used in many

data analysis application like medical informatics,

biogenetics etc.

The relational model can be converted to pivot concepts

and Pivot is basically used for grouping variables and to

make certain complex data analysis queries [4, 5, 6].

CASE expression [7, 8, 9] can be used to create one or

more numbers of columns, where clause and order by

clause of SQL statement. It can also be used in different

kind of statements in DML.

The CASE expression compares set of values may be

static or dynamic and can be converted into columns

without changing the data base structure.

Performance Measurement between PIVOT operator

and CASE expression:

To measure the performance of the both PIVOT operator

and CASE expressions following four tables are used and

shown along with their relationship and navigation

properties.

To measure the performance among the PIVOT operator

and CASE expression two methods have been used one is

the Query Execution Plan, the other one is execution cost

in terms of Ticks (10,000 Ticks = 1Milli Sec).

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 89

(Figure-01: The Schema of Database Tables used in the Paper)

The data store as follows while the teachers enter the attendance.

Roll No Student Name Parent Mobile Number Subject Present

15CSE061 ANUPAM ALOK 9439271311 CP 1

15CSE061 ANUPAM ALOK 9439271311 MECH 1

15CSE061 ANUPAM ALOK 9439271311 MATH 1 1

15CSE061 ANUPAM ALOK 9439271311 BE 0

15CSE061 ANUPAM ALOK 9439271311 PHY 1 1

15CSE061 ANUPAM ALOK 9439271311 CE 0

(Table -01: Data in Database entered by six Subject Teachers)

When the PIVOT operator is used the row wise data are converted into columns with aggregated values as follows:

Sl

No
Roll No Student Name

Parent Mobile

Number
BE CE CP

MATH

1
MECH

PHY

1

1 15CSE061
ANUPAM

ALOK
9439271311 0 0 1 1 1 1

(Table -02: Data in Database by after PIVOT Operation of Table-01)

The query to get above data with dynamic aggregated column as follows:

DECLARE @ColumnNames nvarchar(max)=''

DECLARE @sql nvarchar(max)=''

select @ColumnNames += QUOTENAME(vcSubject_Short_Name) + ',' from

(SELECT Distinct smsAttendance_Master.vcSubject_Short_Name FROM

smsAttendance_Master,smsSubject_Registration_Master WHERE

smsAttendance_Master.vcSubject_Registration_No=smsSubject_Registration_Master.vcSubject_Registration_No

AND smsSubject_Registration_Master.vcBranch_Id='BSH' and intSemester= 1 and

vcSection='D' and smsAttendance_Master.dtDtAttendance_Date='11/2/2015') as test

set @ColumnNames=LEFT(@ColumnNames, NULLIF(LEN(@ColumnNames)-1,-1))

set @sql= 'select * from (select smsAttendance_Details.vcRoll_No as Roll_No,smsStudent.vcStudent_Name as

Student_Name,

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 90

smsStudent.vcFathers_No as Parent_Mobile_Number, smsAttendance_Master.vcSubject_Short_Name as

Subject_Name,

intpresent from smsSubject_Registration_Master, smsAttendance_Master, smsAttendance_Details, smsStudent where

smsSubject_Registration_Master.vcSubject_Registration_No=smsAttendance_Master.vcSubject_Registration_No and

smsAttendance_Master.vcAttendance_No =smsAttendance_Details.vcAttendance_No and

smsAttendance_Details.vcRoll_No = smsStudent.vcRoll_No AND smsStudent.vcBranch_Id=''BSH'' AND

smsStudent.intSemester=1 and smsStudent.vcSection=''D'' and smsAttendance_Master.dtDtAttendance_Date

=''11/2/2015'') as basedata

pivot (SUM(intpresent) for Subject_Name in(' + @ColumnNames + '))AS PIVOTETABLE'

execute sp_executesql @sql

(Query-01: Query using PIVOT operator with dynamic aggregated column)

For the five subjects namely CP, BE, MECH, MATH-1,PHY-1 in the table-04 becames null as the student information

was not set while entering where as in the subject CE it indicated the student is present.

Roll No Student Name Parent Mobile Number Subject Present

15CSE061 ANUPAM ALOK 9439271311 CP 1

15CSE061 ANUPAM ALOK 9439271311 MECH 1

15CSE061 ANUPAM ALOK 9439271311 MATH 1 1

15CSE061 ANUPAM ALOK 9439271311 BE 0

15CSE061 ANUPAM ALOK 9439271311 PHY 1 1

15CSE061 ANUPAM ALOK 9439271311 CE 0

15CSE062 SOMA SAHOO 8018339927 CE 1

(Table -03: Data after inserting a new record of Soma Sahoo for the subject CE)

Sl

No
Roll No Student Name

Parent Mobile

Number
BE CE CP

MATH

1
MECH

PHY

1

1 15CSE061 ANUPAM ALOK 9439271311 0 0 0 0 0 0

2 15CSE062 SOMA SAHOO 8018339927 NULL 1 NULL NULL NULL NULL

(Table -04: Report after applying PIVOT operator of table -03)

It is also experimented that, when the structure of the table changes it results unrelated output as because in the

grouping phase the new column name doesn’t appear. Secondly getting row wise sum using PIVOT operator is not

possible.

CASE expression can be used in the place of PIVOT operator with following query:

SELECT

smsAttendance_Details.vcRoll_No as Roll_No,smsStudent.vcStudent_Name as Student_Name,

smsStudent.vcFathers_No as Parent_Mobile_Number,

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'CP' THEN intpresent END) AS 'CP',

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'BE' THEN intpresent END) AS 'BE',

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'CE' THEN intpresent END) AS 'CE',

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'MATH 1' THEN intpresent END) AS 'MATH

1',

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'MECH' THEN intpresent END) AS 'MECH',

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'PHY 1' THEN intpresent END) AS 'PHY 1',

SUM(intpresent) AS Total

FROM smsSubject_Registration_Master,smsAttendance_Master,smsAttendance_Details,

smsStudent where

smsSubject_Registration_Master.vcSubject_Registration_No=smsAttendance_Master.vcSubject_Registration_No and

smsAttendance_Master.vcAttendance_No=smsAttendance_Details.vcAttendance_No and

smsAttendance_Details.vcRoll_No=smsStudent.vcRoll_No AND smsStudent.vcBranch_Id='BSH'

AND smsStudent.intSemester=1 and smsStudent.vcSection='D'

and smsAttendance_Master.dtDtAttendance_Date='11/2/2015'

GROUP BY smsAttendance_Details.vcRoll_No ,smsStudent.vcStudent_Name ,

smsStudent.vcFathers_No

-- Grouping phase

GO

(Query-02: Query using CASE expression with static cross tab columns)

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 91

As the requirement is dynamic in nature it is necessary to generate dynamic CASE expression depending on the diffrent

subjects taught, as a result cursor is used to get dynamic cross tab colum in CASE expression. The related query is

given below:

Declare @str1 as varchar(1000)=''

Declare @Name as varchar(100)=''

DECLARE @sql1 nvarchar(max)=''

Declare MY_data1 CURSOR FOR

SELECT Distinct smsAttendance_Master.vcSubject_Short_Name FROM

smsAttendance_Master,smsSubject_Registration_Master WHERE

smsAttendance_Master.vcSubject_Registration_No=smsSubject_Registration_Master.vcSubject_Registration_No

AND smsSubject_Registration_Master.vcBranch_Id='BSH' and intSemester= 1 and

vcSection='D' and smsAttendance_Master.dtDtAttendance_Date='11/2/2015'

OPEN MY_data1

 FETCH NEXT FROM MY_data1 INTO @Name

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @str1 += 'COALESCE(SUM(CASE WHEN

smsAttendance_Master.vcSubject_Short_Name = ' + QUOTENAME(@Name,'''') +' THEN intpresent END),0) AS '

+ QUOTENAME(@Name,'''') + ',';

 print @Name;

 FETCH NEXT FROM MY_data1 INTO @Name

 END

 CLOSE MY_data1;

 DEALLOCATE MY_data1;

set @sql1= 'SELECT smsAttendance_Details.vcRoll_No as Roll_No, smsStudent.vcStudent_Name as

Student_Name,smsStudent.vcFathers_No as Parent_Mobile_Number, ' + @str1 + ' SUM(intpresent) AS Total

FROM smsSubject_Registration_Master,smsAttendance_Master,smsAttendance_Details,

smsStudent where smsSubject_Registration_Master.vcSubject_Registration_No

=smsAttendance_Master.vcSubject_Registration_No and smsAttendance_Master.vcAttendance_No

=smsAttendance_Details.vcAttendance_No and

smsAttendance_Details.vcRoll_No=smsStudent.vcRoll_No AND smsStudent.vcBranch_Id=''BSH'' AND

smsStudent.intSemester=1 and smsStudent.vcSection=''D'' and smsAttendance_Master.dtDtAttendance_Date

=''11/3/2015'' GROUP BY smsAttendance_Details.vcRoll_No ,smsStudent.vcStudent_Name

,smsStudent.vcFathers_No ';

execute sp_executesql @sql1

(Query-03: Query using CASE expression with dynamic cross tab columns)

3. EXPERIMENTAL RESULTS

We took random data set and executed using the code segment of query-01 and measured the execution cost in terms of

Ticks (10,000Ticks=1Milli Second) for the total of 2922 records of 10 different execution with different data set. The

execution cost found to be 15600027 Ticks. This is represented as follows.

Using Dynamic PIVOT Operator

Sl. No
Number of

Data Set
Start Time (In Ticks) End Time(In Ticks)

Time Required

(In Ticks)

1 360 635849210629289000 635849210631785000 2496004

2 360 635849211935635000 635849211938287000 2652004

3 360 635849212946985000 635849212948233000 1248002

4 360 635849214004199000 635849214005603000 1404002

5 96 635849215455781000 635849215456717000 936002

6 96 635849216525943000 635849216526879000 936002

7 210 635849217585029000 635849217585965000 936002

8 360 635849218936460000 635849218937552000 1092002

9 360 635849220800975000 635849220803003000 2028003

10 360 635849222914477000 635849222916349000 1872004

Total 2922 15600027

(Table -02: Execution cost of PIVOT Operator of Query-01, measured in TICKS)

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 92

The same data executed using the dynamic CASE expression (query-03) and measured the execution cost in terms of

Ticks for the same total numbers of 2922 records, the execution cost found to be 12792021 Ticks.

Using Dynamic CASE Expression

Sl.

No.

Number of

Data Set
Start Time (In Ticks) End Time(In Ticks)

Time Required

(In Ticks)

1 360 635849210851121000 635849210852993000 1872003

2 360 635849212610492000 635849212611584000 1092002

3 360 6358492135411650000 635849213542438000 1248002

4 360 635849214453012000 635849214454260000 1248002

5 96 635849215892582000 635849215893518000 936001

6 96 635849216832328000 635849216833264000 936002

7 210 635849218347090000 635849218348026000 936001

8 360 635849219005412000 635849219006348000 936002

9 360 635849221892977000 635849221894693000 1716003

10 360 635849222864712000 635849222866584000 1872003

Total 2922

12792021

(Table -03: Execution cost of CASE expression of Query-03, measured in TICKS)

The difference in performance is explained as follows:

Sl. No.
 Number of Data

Set

Ex. Cost in Ticks using

PIVOT Operator

Ex. Cost in Ticks using

CASE Expression

Difference

in Tics

1 360 2496004 1872003 624001

2 360 2652004 1092002 1560002

3 360 1248002 1248002 0

4 360 1404002 1248002 156000

5 96 936002 936001 1

6 96 936002 936002 0

7 210 936002 936001 1

8 360 1092002 936002 156000

9 360 2028003 1716003 312000

10 360 1872004 1872003 1

(Table -04: Difference in performance using PIVOT operator and CASE expression)

(Graph-01, 02: Comparison graph of Table-04)

It is observed that, for any length of random data set the execution cost of CASE expression is either smaller or same to

the execution cost of PIVOT operator. In this random sampled data set we found that CASE expression is 960.99 Ticks

per record faster than Pivot operator.

Here we found the esteemated operator cost in the case of PIVOT operator is 66% and the corresponding cost in case of

CASE expression is 59%. It indicates that, CASE expression differed by less 7%. So CASE expression can be

substituted in PIVOT operator for better performance.

The graphical representation of query execution plan of the PIVOT operator (query-01) is as follows:

0

500000

1000000

1500000

2000000

2500000

3000000

1 3 5 7 9

Numner of
Data Set

Ex. Cost in
Ticks using
PIVOT
Operator 0

500000

1000000

1500000

2000000

2500000

3000000

1 3 5 7 9

Numner of
Data Set

Ex. Cost in
Ticks using
PIVOT
Operator

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 93

The graphical representation of query execution plan of the CASE expression (query-02) is as follows:

4. CONCLUSION

To represent data in cross tab report it is suggested to use

CASE expression in place of PIVOT operator. The

difficulties like using different group functions, getting

row wise sum, NULL value when database schema

changes and specifying explicit column name while

grouping can be overcome using CASE expression. It has

been observed that the performance of CASE expression is

better than PIVOT operator. Using tuning the

experimented queries can be analyzed and the

performance of the execution shall be kept for further

study and research.

REFERENCES

[1] “Pivoting approaches for bulk extraction of Entity–Attribute–Value
data” by Valentin Dinu, Prakash Nadkarni, Cynthia Brandt,

Computer Methods and Programs in Biomedicine 82(2006), PP

38–43.

[2] “PIVOT: An adaptive information discovery framework for

computational grids” by Guiyi Wei, Yun Ling, Athanasios V.
Vasilakos, Bin Xiao, Yao Zheng Information Sciences 180 (2010)

PP 4543–4556.

[3] “Using grouping variables to express complex decision support
queries” by Damianos Chatziantoniou Data & Knowledge

Engineering 61 (2007) PP 114–136.

[4] “A system for query, analysis, and visualization of multi-dimensional
relational databases” by C. Stolte, P. Hanrahan, Polaris Proceedings

of the IEEE Information Visualization Symposium, 2000.

[5] “A data stream language and system designed for power and
extensibility” by Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo,

C., ACM Conference on Information and Knowledge Management

(CIKM) 2006. , PP. 337–346.
[6] “RFID data processing with a data stream query language” by Bai,

Y., Wang, F., Liu, P., Zaniolo, C., Liu, S., IEEE International

Conference on Data Engineering (ICDE) 2007. PP 1184–1193.
[7] https://docs.oracle.com/cd/B28359_01/server.111/b28286/expressions

004. htm

[8] “Introducing Microsoft SQL Server 2008 r2” by Ross Mistry and
Stacia Misner.

[9] “Microsoft SQL Server 2008 Reporting Service” by Stacia Misner.

