ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Performance Measurement using CASE
Expression over PIVOT Operator in SQL Server
2008 r2

Mr. Sudhakar Panigrahy*, Mr. Pragnyaban Mishra®
Dept. of CSE, Gandhi Institute of Engineering & Technology, Gunupur, Rayagada, India™?

Abstract: Data aggregation using PIVOT operator is useful in many aspects by converting data from rows into column
as per the common values. The execution can be faster by using CASE expression in SQL Server 2008 r2. So, CASE
expression can be used in the place of PIVOT operator. Some of the major issues in PIVOT operator are the grouping
elements can’t be defined explicitly. Thus, when database schema changes by adding new column in the existing tables
results NULL value in the report. Getting row and column wise aggregated value not possible with PIVOT operator.
At a time only one grouping function can be used i.e Different grouping functions can’t be applied in different pivot

columns.

These problems can be solved by using CASE expression. In this paper it is explained the difficulties

observed in PIVOT operator and solved using CASE Expression.

Keywords: SQL Server 2008 r2, CASE expression, NULL value, PIVOT operator.

1. INTRODUCTION

A pivot table is a frequently used method of summarizing
and displaying especially report data by means of
grouping and aggregating values. The main use of PIVOT
operator in SQL Server is to rotate rows into columns
without changing the data base schema. Pivoting (or
producing a “cross-tab™) is a common reporting
requirement and data stored in rows are presented it in
columns. PIVOT compares unique value from row and
aggregates the values of the specified column. These
aggregated value represented in cross tab format (PIVOT
table). Converting from row to column can be done
manually through a traditional CASE expression [7, 8, 9].
Generating Dynamic column in both PIVOTE operator
and CASE expression is a common requirement for
developer as sometimes dynamic column retrieves from
another schema or depending on the different values of
row data.

The three phases which are used in the CASE expression
are Grouping Phase, Spreading Phase and Aggregation
Phase. In the Grouping Phase it compacts the records into
distinct database entities and performs the GROUP BY.
The Spreading Phase which is a second phase where
multiple CASE expressions rotates data from rows into
columns and finally in the aggregation phase the GROUP
function can be used to get grouping values in the pivot
column.

In this paper it is explained the details of SQL statements
in order to execute complex queries in both the PIVOT
operator and CASE expression with dynamic pivot
column.

2. RELATED WORK

Valentin Dinu et al. [1] explained the Entity—Attribute—
Value (EAV) data, as present in repositories of clinical

Copyright to IJARCCE

DOI 10.17148/IJARCCE.2015.41219

patient data, and show how it must be transformed
(pivoted) into one-column-per-parameter format before it
can be used by a variety of analytical programs. Guiyi Wei
et al. [2] explained an adaptive discovery frame work
called as PIVOT which is called as an active information
discovery mechanism and it was found, PIVOT is highly
adaptive and necessary utility for grid system.

Damianos Chatziantoniou [3] Transpose a table row data
as columns with correlated aggregation and used in many
data analysis application like medical informatics,
biogenetics etc.

The relational model can be converted to pivot concepts
and Pivot is basically used for grouping variables and to
make certain complex data analysis queries [4, 5, 6].

CASE expression [7, 8, 9] can be used to create one or
more numbers of columns, where clause and order by
clause of SQL statement. It can also be used in different
kind of statements in DML.

The CASE expression compares set of values may be
static or dynamic and can be converted into columns
without changing the data base structure.

Performance Measurement between PIVOT operator
and CASE expression:

To measure the performance of the both PIVOT operator
and CASE expressions following four tables are used and
shown along with their relationship and navigation
properties.

To measure the performance among the PIVOT operator
and CASE expression two methods have been used one is
the Query Execution Plan, the other one is execution cost
in terms of Ticks (10,000 Ticks = 1Milli Sec).

88

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

]
IJARCCE

Gy smsSubject Registration_Master A3 iy smsAttendance Details

=! Properties
¥ wcSubject Registration_Mo
S yoSession
& yoBranch_Id
S woSection
ﬁ intSemastar
S vostatus
S oRemarks
—=! MNawigation Properties = il

=l Propertes
& yoattendance No
& poRoll_MNo
'.li intPresant
= Mavigation Properties
y=l smsAttendance_Master
w=! smsStudeant

w=l smsAttendance_Master

v“" smsAttendance_Master -;]__1

=! Properties
¥E woAttendance_Mo
B voSubject Registration_No
S woSubject Short MName
& wcEmp_code

=! Properties

»E wcRoll_Mo
p wcReg_MNo
Jo wostudent Nams

S dintattendance_Date
S diDate OF Entry

B yoClass_Time

& wcTopics_Covered

& wcStatus

& voRemarks

S voGendear
S dtoos

P weSession
S vyoBranch_Id
M peSection

S intSemestar

H& voClass_Adjusted_By_Emp_Code S At
=/ MNawigation Properties F o "\I’{:p-f:\ﬁt
y=] smsAttendance_Details : :::':l
w=l smsSubject_Registration_Master B ot
& woPin
S Sttt

F poFathers_Mams

(Figure-01: The Schema of Database Tables used in the Paper)

The data store as follows while the teachers enter the attendance.

Roll No Student Name Parent Mobile Number Subject Present
15CSE061 | ANUPAM ALOK 9439271311 CP 1
15CSE061 | ANUPAM ALOK 9439271311 MECH 1
15CSE061 | ANUPAM ALOK 9439271311 MATH 1 1
15CSE061 | ANUPAM ALOK 9439271311 BE 0
15CSE061 | ANUPAM ALOK 9439271311 PHY 1 1
15CSE061 | ANUPAM ALOK 9439271311 CE 0

(Table -01: Data in Database entered by six Subject Teachers)

When the PIVOT operator is used the row wise data are converted into columns with aggregated values as follows:

Sl 1 RollNo | Student Name | FarentMobile | or i op fop | MATH | e, | PHY
No Number 1 1
ANUPAM
1 | 15CSE061 INE: 9439271311 oo |1 1 1 1

(Table -02: Data in Database by after PIVOT Operation of Table-01)
The query to get above data with dynamic aggregated column as follows:

DECLARE @ColumnNames nvarchar(max)="

DECLARE @sql nvarchar(max)="

select @ColumnNames += QUOTENAME (vcSubject_Short_Name) + ' from

(SELECT Distinct smsAttendance_Master.vcSubject_Short Name FROM
smsAttendance_Master,smsSubject_Registration_Master WHERE
smsAttendance_Master.vcSubject_Registration_No=smsSubject_Registration_Master.vcSubject_Registration_No
AND smsSubject_Registration_Master.vcBranch_ld="BSH' and intSemester=1 and

vcSection='D" and smsAttendance_Master.dtDtAttendance_Date='11/2/2015') as test

set @ColumnNames=LEFT(@ColumnNames, NULLIF(LEN(@ColumnNames)-1,-1))

set @sql= 'select * from (select smsAttendance_Details.vcRoll_No as Roll_No,smsStudent.vcStudent_Name as
Student_Name,

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 89

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

IJARCCE

smsStudent.vcFathers_No as Parent_Mobile_Number, smsAttendance_Master.vcSubject_Short_Name as
Subject_Name,

intpresent from smsSubject_Registration_Master, smsAttendance_Master, smsAttendance_Details, smsStudent where
smsSubject_Registration_Master.vcSubject_Registration_No=smsAttendance_Master.vcSubject_Registration_No and
smsAttendance_Master.vcAttendance_No =smsAttendance_Details.vcAttendance_No and
smsAttendance_Details.vcRoll_No = smsStudent.vcRoll_No AND smsStudent.vcBranch_Id="BSH" AND
smsStudent.intSemester=1 and smsStudent.vcSection="D" and smsAttendance Master.dtDtAttendance Date
="11/2/2015") as basedata

pivot (SUM(intpresent) for Subject_Name in(* + @ColumnNames + ') JAS PIVOTETABLE'

execute sp_executesql @sql

(Query-01: Query using PIVOT operator with dynamic aggregated column)

For the five subjects namely CP, BE, MECH, MATH-1,PHY-1 in the table-04 becames null as the student information
was not set while entering where as in the subject CE it indicated the student is present.

Roll No Student Name Parent Mobile Number | Subject | Present
15CSE061 | ANUPAM ALOK 9439271311 CP 1
15CSE061 | ANUPAM ALOK 9439271311 MECH 1
15CSE061 | ANUPAM ALOK 9439271311 MATH 1 1
15CSE061 | ANUPAM ALOK 9439271311 BE 0
15CSE061 | ANUPAM ALOK 9439271311 PHY 1 1
15CSE061 | ANUPAM ALOK 9439271311 CE 0
15CSE062 | SOMA SAHOO 8018339927 CE 1

(Table -03: Data after inserting a new record of Soma Sahoo for the subject CE)

SI'1 RolilNo | Student Name | ParentMobile | g hop | op [MATH | oy | PHY
No Number 1 1
1 | 15CSE061 | ANUPAM ALOK | 9439271311 0 [0 0 0 0 0
2 | 15CSE062 | SOMA SAHOO | 8018339927 | NULL | 1 | NULL | NULL | NULL | NULL

(Table -04: Report after applying PIVOT operator of table -03)

It is also experimented that, when the structure of the table changes it results unrelated output as because in the
grouping phase the new column name doesn’t appear. Secondly getting row wise sum using PIVOT operator is not
possible.

CASE expression can be used in the place of PIVOT operator with following query:

SELECT

smsAttendance_Details.vcRoll_No as Roll_No,smsStudent.vcStudent_Name as Student_Name,
smsStudent.vcFathers_No as Parent_Mobile_Number,

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'CP' THEN intpresent END) AS 'CP’,
SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'BE' THEN intpresent END) AS 'BE',
SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'CE' THEN intpresent END) AS 'CE',
SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_Name = 'MATH 1' THEN intpresent END) AS 'MATH
1,

SUM(CASE WHEN smsAttendance_Master.vcSubject_Short_ Name = '"MECH' THEN intpresent END) AS 'MECH',
SUM(CASE WHEN smsAttendance_Master.vcSubject_Short Name = 'PHY 1' THEN intpresent END) AS 'PHY 1",
SUM(intpresent) AS Total

FROM smsSubject_Registration_Master,smsAttendance_Master,smsAttendance_Details,

smsStudent where
smsSubject_Registration_Master.vcSubject_Registration_No=smsAttendance_Master.vcSubject_Registration_No and
smsAttendance_Master.vcAttendance_ No=smsAttendance_Details.vcAttendance_No and
smsAttendance_Details.vcRoll_No=smsStudent.vcRoll_No AND smsStudent.vcBranch_Id="BSH'

AND smsStudent.intSemester=1 and smsStudent.vcSection="D'

and smsAttendance_Master.dtDtAttendance_Date='11/2/2015'

GROUP BY smsAttendance_Details.vcRoll_No ,smsStudent.vcStudent_Name ,

smsStudent.vcFathers_No

-- Grouping phase

GO

(Query-02: Query using CASE expression with static cross tab columns)

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 90

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

IJARCCE

As the requirement is dynamic in nature it is necessary to generate dynamic CASE expression depending on the diffrent
subjects taught, as a result cursor is used to get dynamic cross tab colum in CASE expression. The related query is
given below:;

Declare @strl as varchar(1000)="

Declare @Name as varchar(100)="

DECLARE @sql1 nvarchar(max)="

Declare MY _datal CURSOR FOR

SELECT Distinct smsAttendance_Master.vcSubject_Short_ Name FROM

smsAttendance_Master,smsSubject_Registration_Master WHERE
smsAttendance_Master.vcSubject_Registration_No=smsSubject_Registration_Master.vcSubject_Registration_No
AND smsSubject_Registration_Master.vcBranch_Id="BSH' and intSemester=1 and
vcSection='D' and smsAttendance_Master.dtDtAttendance_Date='11/2/2015'

OPEN MY _datal

FETCH NEXT FROM MY _datal INTO @Name
WHILE @@FETCH_STATUS =0

BEGIN

+ QUOTENAME(@Name,"") +,';

END

SET @strl += 'COALESCE(SUM(CASE WHEN
smsAttendance_Master.vcSubject_Short_Name ="'+ QUOTENAME(@Name,") + THEN intpresent END),0) AS"

print @Name;
FETCH NEXT FROM MY _datal INTO @Name

CLOSE MY _datal,;

DEALLOCATE

MY _datal;

set @sqll= 'SELECT smsAttendance_Details.vcRoll_No as Roll_No, smsStudent.vcStudent_Name as
Student_Name,smsStudent.vcFathers_No as Parent_Mobile_Number, ' + @strl + ' SUM(intpresent) AS Total

FROM smsSubject_Registration_Master,smsAttendance_Master,smsAttendance_Details,

smsStudent where smsSubject_Registration_Master.vcSubject_Registration_No
=smsAttendance_Master.vcSubject_Registration_No and smsAttendance_Master.vcAttendance_No
=smsAttendance_Details.vcAttendance_No and
smsAttendance_Details.vcRoll_No=smsStudent.vcRoll_No AND smsStudent.vcBranch_Id="BSH" AND
smsStudent.intSemester=1 and smsStudent.vcSection="D" and smsAttendance_Master.dtDtAttendance_Date
="11/3/2015" GROUP BY smsAttendance Details.vcRoll_No ,smsStudent.vcStudent_Name
,smsStudent.vcFathers No ';
execute sp_executesql @sqll

(Query-03: Query using CASE expression with dynamic cross tab columns)

3. EXPERIMENTAL RESULTS

We took random data set and executed using the code segment of query-01 and measured the execution cost in terms of
Ticks (10,000Ticks=1Milli Second) for the total of 2922 records of 10 different execution with different data set. The
execution cost found to be 15600027 Ticks. This is represented as follows.

Using Dynamic PIVOT Operator

SI. No N;Q:gesre?f Start Time (In Ticks) End Time(In Ticks) T'r(nlf] F_T_eigll(!)red

1 360 635849210629289000 635849210631785000 2496004

2 360 635849211935635000 635849211938287000 2652004

3 360 635849212946985000 635849212948233000 1248002

4 360 635849214004199000 635849214005603000 1404002

5 96 635849215455781000 635849215456717000 936002

6 96 635849216525943000 635849216526879000 936002

7 210 635849217585029000 635849217585965000 936002

8 360 635849218936460000 635849218937552000 1092002

9 360 635849220800975000 635849220803003000 2028003

10 360 635849222914477000 635849222916349000 1872004
Total 2922 15600027

(Table -02: Execution cost of PIVOT Operator of Query-01, measured in TICKS)

Copyright to IJARCCE

DOI 10.17148/IJARCCE.2015.41219

91

IJARCCE

The same data executed using the dynamic CASE expression (query-03) and measured the execution cost in terms of

IJARCCE

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 12, December 2015

Ticks for the same total numbers of 2922 records, the execution cost found to be 12792021 Ticks.

Using Dynamic CASE Expression
NS:).. Ngggzre?f Start Time (In Ticks) End Time(In Ticks) T'Tﬁ] I?reigESI;Ed
1 360 635849210851121000 635849210852993000 1872003
2 360 635849212610492000 635849212611584000 1092002
3 360 6358492135411650000 635849213542438000 1248002
4 360 635849214453012000 635849214454260000 1248002
5 96 635849215892582000 635849215893518000 936001
6 96 635849216832328000 635849216833264000 936002
7 210 635849218347090000 635849218348026000 936001
8 360 635849219005412000 635849219006348000 936002
9 360 635849221892977000 635849221894693000 1716003
10 360 635849222864712000 635849222866584000 1872003
Total 2922 12792021

(Table -03: Execution cost of CASE expression of Query-03, measured in TICKS)

The difference in performance is explained as follows:

Sl No Number of Data Ex. Cost in Ticks using Ex. Cost in Ticks using Difference
T Set PIVOT Operator CASE Expression in Tics
1 360 2496004 1872003 624001
2 360 2652004 1092002 1560002
3 360 1248002 1248002 0
4 360 1404002 1248002 156000
5 96 936002 936001 1
6 96 936002 936002 0
7 210 936002 936001 1
8 360 1092002 936002 156000
9 360 2028003 1716003 312000
10 360 1872004 1872003 1
(Table -04: Difference in performance using PIVOT operator and CASE expression)
3000000 -~ 3000000 -
2500000 Numner of 2500000 - B Numner of
2000000 - Data Set 2000000 - Data Set
1500000 +— — 1500000 -
1000000 —— — Ex. Cost in 1000000 - ‘ w M Ex. Cost in
Ticks using HNRNN.., Ticks using
- 500000 - | |
500000 PIVOT | PIVOT
0 -+rrrrrrrre Operator 0 LB s | operator
13579 3579

(Graph-01, 02: Comparison graph of Table-04)

It is observed that, for any length of random data set the execution cost of CASE expression is either smaller or same to
the execution cost of PIVOT operator. In this random sampled data set we found that CASE expression is 960.99 Ticks
per record faster than Pivot operator.

Here we found the esteemated operator cost in the case of PIVOT operator is 66% and the corresponding cost in case of
CASE expression is 59%. It indicates that, CASE expression differed by less 7%. So CASE expression can be
substituted in PIVOT operator for better performance.

The graphical representation of query execution plan of the PIVOT operator (query-01) is as follows:

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41219 92

IJARCCE

IJARCCE

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 4, Issue 12, December 2015
dn Microsoft SQL Server Management Studio =-|a
File Edit View Query Debug Tools Window Community Help
Abewauey | [y [S H I HE
2 | Mysms v | 1 Execute b v 13 E, 7 iy | g3 (8] &y AL
Object Explorer w I % || SOLQuerylsql-P.SMySms (sa(53))" - x
Connect = ij veSection='D' and smsAttendance_Master.dtDtAttendance Date=' 11/z/z018" | as test —
=1 [PMS\SOLEXPRESS (SL Serve 58t BColunmilawes=LEFT (0Co Lunnliawes, WULLIF [LEN (BColusmNanes] -1,-1)] ~
= [Databases < w >
5 [System Databases - T
5 [J FeedbackSystern L3 Messages | 5 Ewecution plan
= 1) MySms ‘—sn/«] “
% [Database Diagrar assToN
= [Tables Cost: 0 %
= [Systern Tables Clustered Index Scan (Clustered)
® O dboProctorS || ouery 2: Query cost (relative to the batchl: D% Scanning s clustered index, entirely or only a range.
[dbo.Proctor S DECLARE @sgl nvarchar {max)='"
w [dbosmsbtten Missing Index [Iwpact 64.8936): CRELTE NONCLUSTERED INDEX [<MNewme of Missing Index, Physical Operation Clustered Index Scan [t] ([dEDEtA.
O dbosmsatten 3 Logical Operation Clustered Index Scan =
[dbosmsBrang oo Estimated 1/0 Cost 0.0646065
= [dbosmsDPR_| ASSTON Estimated CPU Cost 00072278
® O dbosmsDPRI | | Fo== 0% Estimated Number of Executions 1
= [dbosmsDPRC Estimated Operator Cost 0.0718343 (66%)
1 dbosmsEmpl Query 3: Query cost (relative to the batchj: 100% Estimated Subtree Cost 00718343
@ 3 dbo.srsHolid select 8ColumnNemes += QUOTENAME (veSubject Short Name) + ', ' from { SELECT Distinc Estimated Number of Rows 302,934 fwe FROM =m.
% = dbosmsProbl Missing Index (Impact 64.8936): CRELTE NONCLUSTERED INDEX [<Name of Missing Index, Estimated Row Size 38B |r] ([dcDrh
Ordered False
w [dbosmsPract = A)
@ 2 dbo.smsSend, j \] 4 3 L Node ID 4
Sort Hash Mazch Clustered Indsx
& O doasmsSee i Fonpurs Sealax (Discinct Sorch (Irmer Joim) lsussubdect_Temist pragicate
& Bl dbosmsStude Cost: 10 % Cest: 2L 3 CO [MySms].dbal]. [smsAttendance_Master].
@ O dbosmsubje [dtDtAtendance_Date]='2015-11-02 00:00:00.000°
& [dbosmsSubje ; object
E O dbosmsUploc Clustered Tndex [MySmslldbol [smafttendance Master).
& [dbo Supervise [susirtendancs Ba: [pksmshttendance_Master vcAttendance No]
= [Views Cost: Output List
% [Synonyms [MySms].[dba] ~
= a = = _Master].vcSubject_Registration_No,
< m > (@ Query executed successfully, [MySms) [dba) 00:00:01 | O raws
Ready [smsAttendance_Master] vcSubject_Short_Name
H = 619PM
‘ @ e=nl Itialitg 12/7/2015

The graphical representation of query execution plan of the CASE expression (query-02) is as follows:

Us Microsoft SQL Server Management Studio
File Edit View Query Debug Tools Window Community Help
D New Query | [y [[|5 W & [2
& | Wysms <] 1B b w v 13 F[E] 17 AL
Object Explorer ~ I X || SQLQuery2.sql-P..S.MySms (sa (55)° | SQLQueryl.sql - Pu$MySms (52 (53"

print BName:
FETCH NEXT FROM MY datal INTO @Name
END
CLOSE NY_datal:
DEALLOCATE MY_datals

Connect+ 33
= [PMS\SOLEXPRESS (0L Servi ~
= [Databases
% [System Databases
% | FeedbackSystem

a

ENES

= 10 MySms set @ogll- 'SELECT -
& [Database Diagranm| | | < [0 >
= (3 Tables 2™ Ewecution plan
@ [System Tabley Clustered Index Scan [Clustered)
5 3 dbo.Proctor_§
g th DmE(DLs Query 47 Query coot (relative to the paton): 100% Scanning a clustered index, sntirely or only a range.
* o Proctor Declare MY _datal CURSOR FOR SELECT Distinct smsittendance Master.vcSubject_Short Neme FRON smsitt
w O dbo.smsAtien ||y ooing Inder (Twpact 59.4608): CREATE NONCLUSTERED INDEX [<Newe of Nissing Index, sysnawe,>] O Physical Operation Clustered Index Scan
5 O dbo.smsfiten =) Logical Operation Clustered Index Scan
& O dbo.smsBrang 2] 34 E IJH T’wg Estimated IO Cost 00646065
& & dhbo.smsDPR | Quer Clustered Index Insere Sequemce Preject — Sore Hash Maecn Estimated CPU Cost 00072278
% 2 dbo.smsDPRL| ik [CUT_PrimaxyRey] (Compte Scalaxr) Pt (Distinet Sors) (Tnner Join) Estimated Number of Executions 1
% 1 dbo.smsDPRC Cose: 8 4 Cost: 0 % Cost: 9% Cast: 19 % Estimated Operator Cost 0.071834% (59%)
5 21 dbo.smsEmpl; Estimated Subtree Cost 0.0718343
5 1 dbo.smsHolid Estimated Number of Rows 202.034
4 51 dbo.smsProbl Estimated Row Size 388
5 3 dbo.smsProct Otdered Efn
& 1 dbo.smsSend NodeD 4
3 db e ||| =
4 o
5 o Predicate
Query 5: Query cost (relative to the batch): 0%
* g SE”W?‘LM OPEN MY datal [MySms].[dbol.[smsAttendance_Master]
a.smsSubje | 0 7
: =0 kj Missing Index (Impact S59.4608): CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>] ON [dtDtAtendance Date]="2015-11-02 00:00:00.000
* Object
5 1 dbo.smslplaz <] [MySms] (dbo].[smsAttendance_Master].
w1 dboSupervise || oot [pksmsAttendance_Master vcAttendance_Na]
[Views Cost: 0 % Output List
% [Synonyms [hySms].[dbo]
w0 @0 o " v _Master] wcSubject_Registration_Na,
< w > Lery executed successfully. [Mysmel [#ba),
Ready [smshittendance_Master] vcSubject_Short_Name
H 6:22PM
| =] Q PR 12772015

4. CONCLUSION

To represent data in cross tab report it is suggested to use
CASE expression in place of PIVOT operator. The
difficulties like using different group functions, getting
row wise sum, NULL value when database schema
changes and specifying explicit column name while
grouping can be overcome using CASE expression. It has
been observed that the performance of CASE expression is
better than PIVOT operator. Using tuning the
experimented queries can be analyzed and the
performance of the execution shall be kept for further
study and research.

REFERENCES

[1] “Pivoting approaches for bulk extraction of Entity—Attribute—Value
data” by Valentin Dinu, Prakash Nadkarni, Cynthia Brandt,
Computer Methods and Programs in Biomedicine 82(2006), PP
38-43.

Copyright to IJARCCE

[2

[3

[4

[5

[6

]

1

—

]

]

“PIVOT: An adaptive information discovery framework for
computational grids” by Guiyi Wei, Yun Ling, Athanasios V.
Vasilakos, Bin Xiao, Yao Zheng Information Sciences 180 (2010)
PP 4543-4556.

“Using grouping variables to express complex decision support
queries” by Damianos Chatziantoniou Data & Knowledge
Engineering 61 (2007) PP 114-136.

“A system for query, analysis, and visualization of multi-dimensional
relational databases” by C. Stolte, P. Hanrahan, Polaris Proceedings
of the IEEE Information Visualization Symposium, 2000.

“A data stream language and system designed for power and
extensibility” by Bai, Y., Thakkar, H., Wang, H., Luo, C., Zaniolo,
C., ACM Conference on Information and Knowledge Management
(CIKM) 2006. , PP. 337-346.

“RFID data processing with a data stream query language” by Bai,
Y., Wang, F., Liu, P., Zaniolo, C., Liu, S., IEEE International
Conference on Data Engineering (ICDE) 2007. PP 1184-1193.

[7] https://docs.oracle.com/cd/B28359_01/server.111/b28286/expressions

004. htm

[8] “Introducing Microsoft SQL Server 2008 12” by Ross Mistry and

Stacia Misner.

[9] “Microsoft SQL Server 2008 Reporting Service” by Stacia Misner.

DOI 10.17148/IJARCCE.2015.41219

93

